FluidPower.Pro

HAWE online product configurator

HAWE product configurator

It was always a challenge for us to configure HAWE proportional multi-section valves such as PSV, PSVF, etc. And I asked many times our vendor about something like an online configurator for HAWE products. You know, the best part of using tools like this is preventing errors, especially in so complicated configurations with a bunch of options. But the best what they suggested is to use HAWE CD with a very old configurator or just send requests to them. What actually is not a time-saving solution.

Here you can directly configure products, access product data, make a customer service request or program your machine control. You can also communicate directly with your contact person via the customer portal. We are looking forward to your feedback and requests in order to continuously optimize and expand our online service offer.
Your HAWE Team

So, what you need to start using product configurator is to make an account in HAWE Customer Portal first:

https://customerportal.hawe.com/

And now, almost for each product at their website you get a link to the “TypeMan+” platform, where you can configure the product. For example here is the link to PSV valve configurator:

https://typegen.hawe.com/?CLASS=C_PSV__110&LAN=en

In addition to the product configurator, you get a spare part catalogue, 3D catalogue and other benefits. Make your life easier!

How to Select, Design, and Install O-Ring Seals

Very good and interesting video about O-rings from Tarkka

Video description:

O-rings are the epitome of elegant engineering: The ring itself costs only a few cents, and the groove it goes in is simple and easy to manufacture. But despite this simplicity, the resulting seal is able to reliably hold many thousands of psi of pressure. O-rings are definitely a machine design component you’ll want to be familiar with, and in this video, we’re going to tell you all about how to design seals with them

What is a proportional control valve?

Proportional control valves provide variable hydraulic outputs proportional to an electric input signal in direction, flow or pressure. Electromagnetic output force of the solenoid is proportional to the current flowing through the coil.

Proportional control valves are used in a variety of applications to control the flow or pressure of fluids. Proportional valves are used in a variety of applications, such as controlling the flow or pressure of fluids. A proportional valve can be either directional or non-directional. Proportional valves are widely used in hydraulic systems and produce variable hydraulic outputs proportional to an electric input signal in direction, flow or pressure. .In hydraulic systems, a proportional valve consists of an actuator and a two-port or three-port valve.

A proportional valve is a valve that regulates the flow of fluid based on some input signal. A proportional valve consists of an actuator and a two-port or three-port valve. The actuator is usually a piston or diaphragm with a rod attached to it. The rod is connected to the stem at one end and pivots in the center of the two-port or three-port.

A proportional control valve is a type of valve that can be used to control the flow of a fluid by using an electric input signal. The electric current is converted into a magnetic field which interacts with the coiled wire in the valve, which in turn changes the flow and pressure of the fluid. There are many different types of proportional valves, but they all function in this same way.

SUN cartridges and low temperatures

Recently we got a request from the customer to check the system components to work in a low-temperature environment up to -40°C. Most components in the customer’s system were SUN cartridges.

And I was really surprised by the mess of info on the Sun Hydraulic website about seals that SUN uses in their cartridges.

For example, on the “Seals: Materials of Construction” page you can find the manufacturer’s temperature range: from -22° to 230° F (-30° to 110° C) for Buna N (Nitrile) and -22 to 260° F (-30 to 125°C) for Polyurethane O-rings.

But, if you download Technical Product Information PDF from their library, you can find different temperature range for Buna N: -50°F to 200°F which means -45°C..+93°C and no info about Polyurethane O-rings.

This is why I was confused and had a lot of questions to SUN:

1. Why the different info is provided on SUN website?
2. Why there isn’t a choice for Polyurethane O-rings in seal material when selecting cartridges in the SUN catalog?
3. Why SUN has so high temperatures for the low environment for both Buna N and Polyurethane seals?

Really, all competitors have better low-temperature limits for their cartridges, for example:

– Parker’s Nitrile: from -40°C to +93.3°C
– Danfoss/Comatrol, Buna-N: from -40°C
– Bucher, Buna “N”: from -40°C to +120°C
– Doering, Buna N: from -42.7°C to +93.3°C
– Eaton, Buna N: from -40°C to +120°C
– Hydraforce’ Buna “N”: -40°C to +100°C; polyurethane: -54°C to +107°C.

Because it was critical for my application, I have sent a request directly to SUN to get answers to the questions above and have gotten next response: the correct low work temperature for Buna N is -30°C. Сoncerning the polyurethane seals – this is not a standard option, but any cartridge can be assembled with polyurethane o-rings that provides low temperature rate to -40°C. Not a big difference in the price, but because this is going to be a custom modification the delivery time for cartridges (statement on November 2021) is 15..16 weeks (what actually is not bad for SUN).

Just would like to share this experience with you…