Hydraulic Pump[ + ] | |||
---|---|---|---|
Imperial | Metrical | ||
Flow Rate | ##Q=\frac{disp\cdot n\cdot E_{v}}{K\cdot 100}## |
#Q# – Flow, gpm #disp# – Displacement, in.cu. #n# – Rotational speed, rpm #E_{v}# – Volumetric Efficiency, % #K# = 231 |
#Q# – Flow, lpm #disp# – Displacement, cm3 #n# – Rotational speed, rpm #E_{v}# – Volumetric Efficiency, % #K# = 1000 |
Displacement | ##disp=\frac{Q\cdot K\cdot 100}{n\cdot E_{v}}## |
#disp# – Displacement, in.cu. #Q# – Flow, gpm #n# – Rotational speed, rpm #E_{v}# – Volumetric Efficiency, % #K# = 231 |
#disp# – Displacement, cm3 #Q# – Flow, lpm #n# – Rotational speed, rpm #E_{v}# – Volumetric Efficiency, % #K# = 1000 |
Leakages (drain flow) |
##Q_L=\frac{disp\cdot n\cdot (100-E_{v})}{K\cdot 100}## |
#Q_L# – Drain Flow, gpm #disp# – Displacement, in.cu. #n# – Rotational speed, rpm #E_{v}# – Volumetric Efficiency, % #K# = 231 |
#Q_L# – Drain Flow, lpm #disp# – Displacement, cm3 #n# – Rotational speed, rpm #E_{v}# – Volumetric Efficiency, % #K# = 1000 |
Required Torque to provide the given pressure |
##T=\frac{disp\cdot p\cdot100}{2\cdot \pi\cdot E_m}## |
#T# – Torque, lb.-in. #disp# – Displacement, in.cu. #p# – Pressure, psi #E_{m}# – Mechanical Efficiency, % |
#T# – Torque, Nm #disp# – Displacement, cm3 #p# – Pressure, MPa #E_{m}# – Mechanical Efficiency, % |
Provided Pressure based on torque from engine |
##p=\frac{2\cdot \pi\cdot T\cdot E_m}{disp\cdot100}## |
#p# – Pressure, psi #T# – Torque, lb.-in. #disp# – Displacement, in.cu. #E_{m}# – Mechanical Efficiency, % |
#p# – Pressure, MPa #T# – Torque, Nm #disp# – Displacement, cm3 #E_{m}# – Mechanical Efficiency, % |
Power provided to the system |
##P=\frac{Q\cdot p}{K}## |
#P# – Power, hp #Q# – Flow, gpm #p# – Pressure, psi #K# = 1714 |
#P# – Power, kW #Q# – Flow, lpm #p# – Pressure, MPa #K# = 60 |
Power required from the engine |
##P_{in}=\frac{Q\cdot p\cdot100}{K\cdot E}## |
#P_{in}# – Power, hp #Q# – Flow, gpm #p# – Pressure, psi #E# – Overall Efficiency, % #K# = 1714 |
#P_{in}# – Power, kW #Q# – Flow, lpm #p# – Pressure, MPa #E# – Overall Efficiency, % #K# = 60 |
Efficiency | ##\frac E{100}=\frac{E_v}{100}\cdot\frac{E_m}{100}## |
#E# – Overall Efficiency, % #E_v# – Volumetric Efficiency, % #E_m# – Mechanical Efficiency, % |
#E# – Overall Efficiency, % #E_v# – Volumetric Efficiency, % #E_m# – Mechanical Efficiency, % |
Hydraulic Motor[ + ] | |||
Imperial | Metrical | ||
Required Flow to provide the given rpm |
##Q=\frac{disp\cdot n\cdot100}{K\cdot E_v}## |
#Q# – Flow, gpm #disp# – Displacement, in.cu. #n# – Rotational speed, rpm #E_{v}# – Volumetric Efficiency, % #K# = 231 |
#Q# – Flow, lpm #disp# – Displacement, cm3 #n# – Rotational speed, rpm #E_{v}# – Volumetric Efficiency, % #K# = 1000 |
Displacement to provide the given rpm |
##disp=\frac{Q\cdot K\cdot E_{v}}{n\cdot 100}## |
#disp# – Displacement, in.cu. #Q# – Flow, gpm #n# – Rotational speed, rpm #E_{v}# – Volumetric Efficiency, % #K# = 231 |
#disp# – Displacement, cm3 #Q# – Flow, lpm #n# – Rotational speed, rpm #E_{v}# – Volumetric Efficiency, % #K# = 1000 |
Leakages (drain flow) |
##Q_L=\frac{disp\cdot n\cdot(100-E_v)}{K\cdot E_v}## |
#Q_L# – Drain Flow, gpm #disp# – Displacement, in.cu. #n# – Rotational speed, rpm #E_{v}# – Volumetric Efficiency, % #K# = 231 |
#Q_L# – Drain Flow, lpm #disp# – Displacement, cm3 #n# – Rotational speed, rpm #E_{v}# – Volumetric Efficiency, % #K# = 1000 |
Output Torque based on the motor inlet pressure |
##T=\frac{disp\cdot p\cdot E_m}{2\cdot \pi\cdot100}## |
#T# – Torque, lb.-in. #disp# – Displacement, in.cu. #p# – Pressure, psi #E_{m}# – Mechanical Efficiency, % |
#T# – Torque, Nm #disp# – Displacement, cm3 #p# – Pressure, MPa #E_{m}# – Mechanical Efficiency, % |
Required Pressure to provide the given torque |
##p=\frac{2\cdot \pi\cdot T\cdot100}{disp\cdot E_m}## |
#p# – Pressure, psi #T# – Torque, lb.-in. #disp# – Displacement, in.cu. #E_{m}# – Mechanical Efficiency, % |
#p# – Pressure, MPa #T# – Torque, Nm #disp# – Displacement, cm3 #E_{m}# – Mechanical Efficiency, % |
Power from the hyd. system |
##P=\frac{Q\cdot p}{K}## |
#P# – Power, hp #Q# – Flow, gpm #p# – Pressure, psi #K# = 1714 |
#P# – Power, kW #Q# – Flow, lpm #p# – Pressure, MPa #K# = 60 |
Power provided to the consumer |
##P_{out}=\frac{Q\cdot p\cdot E}{K\cdot 100}## |
#P_{out}# – Power, hp #Q# – Flow, gpm #p# – Pressure, psi #E# – Overall Efficiency, % #K# = 1714 |
#P_{out}# – Power, kW #Q# – Flow, lpm #p# – Pressure, MPa #E# – Overall Efficiency, % #K# = 60 |
Efficiency | ##\frac E{100}=\frac{E_v}{100}\cdot\frac{E_m}{100}## |
#E# – Overall Efficiency, % #E_v# – Volumetric Efficiency, % #E_m# – Mechanical Efficiency, % |
#E# – Overall Efficiency, % #E_v# – Volumetric Efficiency, % #E_m# – Mechanical Efficiency, % |